Followings are the code that I wrote in Deep Learning Toolbox (2019b) to creates all the plots shown in this page. You may copy these
code and play with these codes. Change variables and try yourself until you get your own intuitive understanding.
< Code 1 >
net = perceptron;
net = configure(net,[0;0],0);
net.b{1} = [0.2];
w = [0.2 0.2];
net.IW{1,1} = w;
alpha = 1.0;
pList = [1 1 0 0; 1 0 1 0];
tList = [1 0 0 0]; % AND
%tList = [1 1 1 0]; % OR
%tList = [0 0 0 1]; % NOR
figure(1);
set(gcf, 'Position', [200, 200, 740, 350])
set(gcf,'color','w');
subplot(1,2,2);
plotpv(pList,tList);
rng(1);
sList = randi([1 4],[1,100]);
for i = 1:60
si = sList(i);
p = pList(:,si);
t = tList(si);
a = net(p);
%------------------------------------
subplot(1,2,1);
th = 0:pi/20:2*pi;
plot(4+cos(th),4+sin(th),'k-');
axis([0,8,0,8]);
set(gca,'xticklabel',[]);
set(gca,'yticklabel',[]);
set(gca,'xtick',[]);
set(gca,'ytick',[]);
tStr = sprintf("Iteration = %d",i);
title(tStr);
w1_ax = [0.2 0.27];
w1_ay = [0.68 0.6];
annotation('textarrow',w1_ax,w1_ay,'String','');
w2_ax = [0.2 0.27];
w2_ay = [0.35 0.45];
annotation('textarrow',w2_ax,w2_ay,'String','');
b_x = [4 4];
b_y = [1.5 3];
line(b_x,b_y,'color','black');
o_ax = [0.34 0.4];
o_ay = [0.51 0.51];
annotation('textarrow',o_ax,o_ay,'String','');
alphaStr = sprintf("Alpha = %0.2f",alpha);
text(2.7,7.0,alphaStr);
in1 = p(1);
inStr1 = sprintf("in1 = %d",in1);
text(0.5,5.9,inStr1);
in2 = p(2);
inStr2 = sprintf("in2 = %d",in2);
text(0.5,2.0,inStr2);
bStr = sprintf("1");
text(3.9,1.0,bStr);
b=net.b{1};
bStr = sprintf("%0.2f",b);
text(4.2,2.3,bStr);
w1 = net.IW{1,1}(1);
w1Str = sprintf("%0.2f",w1);
text(2.5,5.5,w1Str);
w2 = net.IW{1,1}(2);
w1Str = sprintf("%0.2f",w2);
text(2.5,2.5,w1Str);
s = in1*w1 + in2*w2 + b;
sStr = sprintf("sum = \n %0.3f",s);
text(3.3,4,sStr);
o = a;
oStr = sprintf("o = %d",o);
text(6.5,4.0,oStr);
d = t;
dStr = sprintf("d = %d",d);
text(6.5,3.55,dStr);
e = d-o;
eStr = sprintf("e = d - o \n = %0.2f",e);
text(6.0,2.85,eStr);
%------------------------------------
subplot(1,2,2);
plotpv(pList,tList);
axis([-1 2 -1 2]);
set(gca,'xticklabel',[]);
set(gca,'yticklabel',[]);
set(gca,'xtick',[]);
set(gca,'ytick',[]);
fprintf("\n----------- %d th iternation ---------------\n",i);
fprintf("[%d %d] => %d\n",p(1),p(2),t(1));
%a = net(p);
fprintf("a = %f\n",a);
e = t-a;
fprintf("e = %f\n",e);
dw = learnp(w,p,[],[],[],[],e,[],[],[],[],[]);
fprintf("dw = [%f %f]\n",dw(1),dw(2));
net.b{1} = net.b{1} + alpha*e;
w = w + alpha*dw;
fprintf("w next = [%f %f], b next = %f\n",w(1),w(2),net.b{1});
net.IW{1,1} = w;
plotpc(net.IW{1,1},net.b{1});
pause(1);
fname = sprintf("%s/temp/PerceptronNOR_%02d.png",pwd,i);
%saveas(gcf,fname);
end;
fprintf("\n----------- Evaluate the Net ---------------\n");
net(pList)
|